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Abstract

The study of heat transfer in rectangular passages with prescribed wall heat flux is of practical interest. These passages could be open
or filled with saturated porous materials. A solution that uses the Green’s function can accommodate the inclusion of heat flux over the
entire surface area or over isolated sections of the boundary. Also, this solution permits the inclusion of frictional heating. Two different
boundary conditions are considered: constant wall temperature and constant wall heat flux. The computed heat transfer coefficients show
that the thermally fully developed condition may not be attainable in practical applications for very narrow passages with prescribed wall
heat flux.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The placement of porous materials in passages can
enhance the transfer of heat to a flowing fluid. Porous
passages with rectangular cross-sections are useful devices
for cooling of engineering systems. There has been a cur-
rent interest in utilization of porous passages for electronic
cooling applications; see e.g. [1]. Other applications are ref-
erenced in the review by Lage and Narasimhan [2]. A cur-
rent general survey is contained in Nield and Bejan [3]. The
particular topic of thermally developing forced convection
in porous media is surveyed by Nield and Kuznetsov [4].
Recent papers involving porous-media forced convection
in ducts of various shapes include those by Haji-Sheikh
and Vafai [5] and Hooman and coworkers [6–8].

The computation of heat transfer rate in rectangular
passages is the subject of this study. The temperature field
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in these passages may have different boundary conditions
depending on the thermal conductivity of their imperme-
able enclosures. In this study, consideration is given to
two different limiting boundary conditions that often
appear in the literature: Constant uniform wall tempera-
ture and locally constant uniform wall heat flux. The first
condition is appropriate when the thermal conductivity of
the enclosing walls is sufficiently high. The prescribed local
wall heat flux is the next limiting condition and it emerges
when the uniformly heated walls of a passage are thin with
relatively low conductivity. These two cases exhibit dis-
tinctly different and interesting features, especially in the
thermally developing region. The analysis reveals that the
coalescence of the thermal boundary layers from the oppo-
site walls strongly depends on the distance between these
walls if they are uniformly heated at a constant rate. For
narrow rectangular passages, this phenomenon increases
the length of the thermally developing region and makes
the thermally fully developed condition unattainable in
practical applications.
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Nomenclature

A area (m2)
A matrix
a duct dimension, see Fig. 1
aij elements of matrix A

B matrix with elements bij

Bm coefficients
b duct dimension, see Fig. 1
bij elements of matrix B

C duct contour (m)
cp constant pressure specific heat (J/kg K)
D matrix with elements dmj

Da Darcy number, K/a2

Dh hydraulic diameter 4A/C (m)
dmj elements of matrix D

E matrix with elements eij

eij elements of matrix E

Fn(z) function, see Eq. (5)
fi, fj basis functions
G Green’s function
h heat transfer coefficient (W/m2 K)
�h average heat transfer coefficient (W/m2 K)
i, j indices
K permeability (m2)
ke effective thermal conductivity
M le/l
m, n indices
N matrix dimension
NuD Nusselt number, hDh/ke

NuD Nusselt number, �hDh=ke

P matrix having elements pmi

Pe Peclet number, qcpaU/ke

Pr Prandtl number, lcp/ke

p pressure, Pa

pmi elements of matrix P

ReD Reynolds number, qUDh/le

S volumetric heat source (W/m3)
T temperature (K)
Ti temperature at x = 0 (K)
U average velocity (m/s)
U average value of �u
u velocity (m/s)
�u �u ¼ lu=ð�a2op=oxÞ
x axial coordinate (m)
x̂ (x/a)/Pe

y, z coordinates (m)
�y, �z y/a and z/a

Greek symbols

bm eigenvalue
cm eigenvalue
h dimensionless temperature
km eigenvalue
l fluid viscosity (N s/m2)
le effective viscosity (N s/m2)
n dimensionless coordinate
q fluid density (kg/m3)
U transformed temperature, Eq. (24)
w eigenfunction

Subscripts

b bulk
f fluid
i inlet condition
s source effect
w wall
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The mathematical formulation of temperature for both
cases of constant wall temperature and uniform wall heat
flux is a necessary part of this presentation. The general
solution to each of these two cases has a relatively large
number of controlling parameters. Therefore, for brevity
of this presentation, the effect of axial conduction is
neglected.

2. Mathematical formulations

The basic working relations are the momentum and the
energy equations. An exact solution for momentum equa-
tion provides the velocity field under a fully developed flow
condition and it is available in [9]. The extended weighted
residual method, described in [10], is employed in order
to determine the temperature distribution from the energy
equation. For completeness of this presentation, a brief
description of the working relations is to follow.
2.1. Momentum equation

The working relations for the computation of velocity
field are widely available in the literature. Their appearance
in this paper is for the convenience of identification of the
parameters in subsequent numerical analysis. For a lami-
nar flow passing through rectangular passages, Fig. 1(a),
with sufficiently high porosity, the entrance length is rela-
tively small [11] and the flow is considered to be hydro-
dynamically fully developed. Accordingly, the Brinkman
momentum equation, as used in Nield et al. [12–14] and
Kuznetsov et al. [15] describes the velocity field; that is,

le

o2u
oy2
þ o2u

oz2

� �
� l

K
u� op

ox
¼ 0 ð1Þ

wherein le is the effective viscosity, l is the fluid viscosity,
K the permeability, and the pressure gradient op/ox is a
constant. By setting �y ¼ y=a, �z ¼ z=a, M = le/l, and
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Fig. 1. A schematic of coordinates and dimensions of a rectangular
passage.
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�u ¼ lu=ð�a2op=oxÞ, Eq. (1) in the dimensionless form
becomes

M
o2�u
o�y2
þ o2�u

o�z2

� �
� 1

Da
�uþ 1 ¼ 0 ð2Þ

wherein Da = K/a2 is the Darcy number and a is the char-
acteristic length, see Fig. 1. The solution of Eq. (2), requires
the condition of �u ¼ 0 at the wall. Once the local velocity u

is known, the mean velocity is

U ¼ 1

A

Z
A

udA ð3Þ

and then U ¼ lU=ð�a2op=oxÞ.
A rapidly converging series solution of Eq. (2), is

�u ¼ 4

pM

X1
n¼1

F nð�zÞ cos
ð2n� 1Þp�y

2
ð4Þ

where

F nð�zÞ ¼
ð�1Þn�1

ð2n� 1Þb2
n

1� coshðbn�zÞ
coshðbn

�bÞ

� �
ð5Þ

and

bn ¼
1

M Da
þ ð2n� 1Þ2p2

4

" #1=2

ð6Þ

The dimensionless mean velocity U , using Eq. (3), is

U ¼ 8

p2M

X1
n¼1

bn
�b� tanhðbn

�bÞ
ð2n� 1Þ2�bb3

n

ð7Þ

and the normalized velocity is

û ¼ u
U
¼ �u

U
¼ p

2

P1
n¼1F nðzÞ cos½ð2n� 1Þpy=2�P1

n¼1
bn

�b�tanhðbn
�bÞ

ð2n�1Þ2�bb3
n

ð8Þ

Also, a direct solution of Eq. (2) is a classical solution of
the Poisson equation, and the normalized velocity, when
bn = (n � 1/2)p and cm ¼ ðm� 1=2Þp=�b, is
û ¼ u
U
¼

P1
n¼1

P1
m¼1

4ð�1Þmþn cosðbn�yÞ cosðcm�zÞ
�bbncmðb2

n þ c2
m þ 1=M DaÞP1

n¼1

P1
m¼1

4

ð�bbncmÞ
2ðb2

n þ c2
m þ 1=M DaÞ

ð9Þ

where �b ¼ b=a. Using Eq. (9), it is possible to get an exact
series solution for prescribed wall heat flux under the ther-
mally fully developed condition. However, for numerical
computations, Eq. (8) with single summation can provide
an accurate solution at reduced computational time. As
the preliminary step, the velocity field should be deter-
mined prior to its insertion into the energy equation. Eqs.
(8) and (9), in addition to, a classical Galerkin solution
of Eq. (2) were utilized as needed, the solution details are
described in [10].

2.2. Governing energy equation

Under the local thermal equilibrium condition, the
energy equation in its general form for hydrodynamically
fully developed and incompressible flow is

ðqcÞf u
oT
ox
¼ o

ox
ke

oT
ox

� �
þ o

oy
ke

oT
oy

� �
þ o

oz
ke

oT
oz

� �
þ Sðx; y; zÞ ð10Þ

where S (x,y,z) includes the contribution of frictional heat-
ing and parameters (qc)f and ke are the fluid thermal capac-
ity and the equivalent thermal conductivity, respectively.
When the contribution of axial conduction is negligible,
Eq. (10) reduces to

o

oy
ke

oT
oy

� �
þ o

oz
ke

oT
oz

� �
þ Sðy; z; xÞ ¼ ðqcpÞf u

oT
ox

ð11Þ

In the subsequent formulations qcp stands for (qcp)f. The
solutions for Eq. (11) with a prescribed constant wall tem-
perature and wall heat flux are the main objective of this
study.

The next task is the computation of temperature in the
entrance region of these rectangular passages. Because
the velocity u depends on y and z while the functional form
of temperature contains x in addition to y and z, the
extended weighted residual method is a suitable solution
technique. Assuming the thermophysical properties are
independent of temperature and boundary conditions are
homogeneous, the standard procedure [10,16] is to let

T ðy; z; xÞ ¼
XN

m¼1

BmWmðy; zÞe�k2
mx ð12Þ

where

Wm ¼
XN

j¼1

dmjfjðy; zÞ ð13Þ

The eigenvalues are k2
m and the coefficients dmj are the mem-

bers of eigenvectors dm; they are obtainable from the
relation

ðAþ k2
mBÞ � dm ¼ 0 ð14aÞ
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where the elements of the matrices A and B are

aij ¼ �
Z

A
kerfiðy; zÞ � rfjðy; zÞdA ð14bÞ

and

bij ¼
Z

A
qcpuðy; zÞfiðy; zÞfjðy; zÞdA ð14cÞ

The functions fi(y,z) and fj(y,z) are the basis functions and
they must satisfy the appropriate homogeneous boundary
conditions. After determination of k2

m and dmj, the appro-
priate mathematical steps in [10] provide the general solu-
tion. The eigenvectors dm will constitute the rows of a
matrix D. When the boundary conditions are homoge-
neous and the thermophysical properties are constant, the
Green’s function solution is

T ðy; z; xÞ ¼ 1

qcp

Z x

n¼0

dn
Z

A
GSðy0; z0; nÞdA0

þ
Z

A
uðy 0; z0ÞGðy; z; xjy0; z0; 0ÞT ðy0; z0; 0ÞdA0

ð15aÞ

wherein the Green’s function G is

Gðy; z; xjy0; z0; nÞ ¼
XN

m¼1

XN

i¼1

pmifiðy0; z0Þ
" #

Wmðy; zÞe�k2
mðx�nÞ

ð15bÞ

The parameters pmi in Eq. (15b) are members of the matrix
P = [(D Æ B)T]�1; details are in [16, Chapter 10]. Computer
software is available to automatically determine the eigen-
values, eigenvectors, and matrix P; e.g., using the
statements

(*amat = matix A, bmat = matrix B, dmat = matrix D,
and pmat = matrix P*)
abar = �Inverse[bmat].amat; eigv = Eigenvalues[abar];
dmat = Eigenvectors[abar];
pmat = Inverse[Transpose[dmat.bmat]];

in Mathematica [21]. Additionally, the general formulation
of the Green’s function in [16, Chapter 10] extends this
solution to accommodate the nonhomogeneous boundary
conditions.

The solution described by Eqs. (15a) and (15b) equally
applies when using the boundary conditions of first,
second, and even the third kind. The main difference is
the selection of the basis functions fj and these basis
functions will be described in the subsequent computations
for boundary conditions of the first kind and second
kind.

2.2.1. Constant wall temperature solution

For this special case, the thermophysical properties have
constant values and the governing energy equation (11) in
dimensionless space, when x̂ ¼ ðx=aÞ=Pe, �y ¼ y=a, �z ¼ z=a,
and h = (T � Tw)/(Ti � Tw), has the following form

o2h
o�y2
þ o2h

o�z2
þ leU

2

keðT i � T wÞ
û2

M Da
þ oû

o�y

� �2

þ oû
o�z

� �2
" #

¼ u
U

� � oh
ox̂

ð16Þ

The computational procedure for h requires the selection of
an appropriate set of basis functions that will satisfy the
homogeneous boundary conditions of the first kind.
Among many possible sets, the particular set

fj ¼ ð1� �y2Þð�b2 � �z2Þ�y2ðmj�1Þ�z2ðnj�1Þ; for j ¼ 1; 2; . . . ;N

ð17Þ
is selected, using all combinations of mj = 1,2, . . . and
nj = 1,2, . . . Next, the temperature solution was acquired
using the aforementioned extended weighted residual meth-
od. First it is necessary to compute the members of matri-
ces A and B by modifying Eqs. (14b) and (14c),

aij ¼ �
Z �b

�z¼0

Z 1

�y¼0

rfið�y;�zÞ � rfjð�y;�zÞd�y d�z ð18aÞ

and

bij ¼
Z �b

�z¼0

Z 1

�y¼0

ûð�y;�zÞfið�y;�zÞfjð�y;�zÞd�y d�z ð18bÞ

The temperature solution Eqs. (15a) and (15b) takes the
following form

hð�y;�z; x̂Þ ¼ 1

qcp

Z x̂

n¼0

dn
Z �b

�z¼0

Z 1

�y¼0

Gð�y;�z; x̂j�y 0;�z0; nÞSð�y 0;�z0Þd�y 0 d�z0

þ
Z �b

�z¼0

Z 1

�y¼0

uð�y 0;�z0ÞGð�y;�z; x̂j�y0;�z0; 0Þd�y 0 d�z0 ð19aÞ

wherein the Green’s function is

Gð�y;�z; x̂j�y0;�z0; nÞ ¼
XN

m¼1

XN

i¼1

pmifið�y 0;�z0Þ
" #

Wmðy; zÞe�k2
mðx̂�nÞ

ð19bÞ
and

Sð�y0;�z0Þ ¼ leU
2

keðT i � T wÞ
û2

M Da
þ oû

o�y 0

� �2

þ oû
o�z0

� �2
" #

ð19cÞ

Once the temperature solution is known, the bulk temper-
ature should be computed from the equation

hbðx̂Þ ¼
1

1� �b

Z �b

�z¼0

Z 1

�y¼0

ûð�y;�zÞhð�y;�z; x̂Þd�y d�z ð20aÞ

and then the Nusselt number, NuD = hDh/ke, is determined
from the relation

NuD ¼ �
D2

h

4hb

dhb

dx̂
ð20bÞ

where Dh = 4ab/(a + b) is the hydraulic diameter. In the
absence of frictional heating, the frictional heating effect
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vanishes, Sð�y0;�z0Þ ¼ 0, and Eq. (19a) is then simplified
accordingly.

Eqs. (17)–(20b) were utilized to compute the local and
average Nusselt numbers. Fig. 2(a)–(d) are prepared to
show the computed NuD for the four different aspect ratios
b/a = 1,2,5,10 as a function of (x/a)/(ReDPr) where
ReD = qUDh/le. Generally, the computation of energy
input to a system is of interest in the design of heat transfer
devices. In this application, the energy equation as applied
to a volume element is

ða� bÞqcpU dT b ¼ qwðaþ bÞdx ð21aÞ
where qw is the mean wall heat flux and qw = h(Tw � Tb).
The substitution h(Tw � Tb) for qw in Eq. (21a) leads to
the following relation

ab
aþ b

� �
qcpU

dT b

T b � T w

¼ �hdx ð21bÞ

whose integration provides the local bulk temperature if
the quantity

�h ¼ 1

x

Z x

0

h dx ð22Þ

called the average heat transfer coefficient is known. There-
fore, the value of �h is of practical interest. The data in
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Fig. 2. Circumferentially averaged Nusselt number for rectangular passages w
Fig. 3(a)–(d) demonstrate the results from the computation
of NuD ¼ �hDh=ke. The values of the Nusselt number when
MDa = 0 are obtained analytically using the classical
product solution; therefore, from the bulk temperature
relation in dimensionless space,

T b � T w

T i � T w

¼ 1
�b

� �
2
X1
m¼1

expð�c2
mx̂Þ

c2
m

" #
2
�b

X1
m¼1

expð�b2
mx̂Þ

b2
m

" #

ð23Þ
where ~x ¼ ðx=aÞ=Pe, cm = (m � 1/2)p, and bm ¼ ðm�
1=2Þp=�b. The remaining lines were computed using the
extended weighted residual method. The computed data
in Fig. 3(a)–(d) are also for �b ¼ b=a ¼ 1; 2; 5 and 10.

A sample of numerical data plotted in Figs. 2(a)–(d) and
3(a)–(d) are in Table 1. The objective was to select a num-
ber of basis functions that would provide a small error
when x̂ ¼ 10�3. As an example, for mj = 1,2, . . . , 12 and
nj = 1,2, . . . , 12 in Eq. (17), the number of basis functions
is N = 78 with Eq. (13). This is a sufficiently large value
of N for the worst case scenario presented here, b/a = 10
and M Da = 10�4. This produced the first eigenvalue
k2

1 ¼ 2:45867 and the last eigenvalue k2
78 ¼ 14; 119:5 that

would yield expð�k2
78x̂Þ ¼ expð�14; 119:5� 10�3Þ ¼ 7:4�

10�7 at x̂ ¼ 10�3. When using mj = 1,2, . . . , 10 and nj =
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ith prescribed wall temperature when b/a = 1 (a), 2 (b), 5 (c), and 10 (d).
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Fig. 3. Average Nusselt number for rectangular passages with prescribed wall temperature when b/a = 1 (a), 2 (b), 5 (c), and 10 (d).
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1,2, . . . , 10 to reduce the number of basis functions to
N = 55, the results show k2

1 ¼ 2:45467 and a sufficiently
large k2

55 ¼ 6525:26. This indicates a reduced accuracy
since expð�k2

55x̂Þ ¼ expð�6525:26� 10�3Þ ¼ 1:5� 10�3.

Also, the first eigenvalues suffered a small change of
0.004 and that would directly influence the Nusselt number
NuD ¼ ð2=DhÞ2k2

1 under thermally fully developed condi-
tion. This deviation is mainly due to insufficient number
of terms when computing the velocity profile and can be
reduced by using Eq. (8) when MDa is very small. There-
fore, as M Da increases, fewer basis functions are needed
for sufficient accuracy. As an example, when using
b/a = 10, MDa = 10�2, and N = 55, the largest computed
eigenvalues is k2

55 ¼ 18; 685:3 that should provide tabulated
data with sufficient accuracy. Accordingly, when MDa is
large, the error in the tabulated data is the truncation error.
However, for smaller M Da parameter, the error is expected
to remain within the last digit and it may get to the third
digit when M Da is very small.

2.2.2. Locally constant wall heat flux solution

The next task is the computation of temperature in the
entrance region of rectangular passages with locally con-
stant wall heat flux qw. As in the previous case, the thermo-
physical properties have constant values. One of the few
methods to accommodate this boundary condition is to
use a temperature transformation in the dimensionless
form of the energy equation, Eq. (11),

hð�y;�z; x̂Þ ¼ T ðy; z; xÞ � T i

qwa=ke

¼ Uð�y;�z; x̂Þ þ �y2

2
þ �z2

2�b
ð24Þ

where qw = keoT/oyjy=a = keoT/ozjz=b is the input heat
flux. After substituting for T from this transformation in
Eq. (11), the function Uð�y;�z; x̂Þ must satisfy equation

o2U
o�y2
þ o2U

o�z2
þ leU

2

qwa
û2

M Da
þ oû

o�y

� �2

þ oû
o�z

� �2
" #

þ
�bþ 1

�b

¼ u
U

� � oU
ox̂

ð25Þ

Moreover, the function hð�y;�z; x̂Þ must satisfy the bound-
ary conditions oU=o�yj�y¼0 ¼ oU=o�yj�y¼1 ¼ 0; oU=o�zj�z¼0 ¼
oU=o�zj�z¼�b ¼ 0 and the entrance condition Uð�y;�z;0Þ ¼ �ð�y2þ
�z2=�bÞ=2.

Eq. (25) contains a heat source expression that results
from viscous dissipation in a porous medium modeled by
the Brinkman equation, in the form recommended by Al-
Hadhrami et al. [17]. An alternative expression was recom-
mended by Nield [18]. For small values of Da the first term
dominates over the remainder of the expression, and then



Table 1
A numerical sample of data appearing in Figs. 2(a)–(d) and 3(a)–(d)

MDa x̂ b/a = 1 b/a = 2 b/a = 5 b/a = 10

NuD NuD NuD NuD NuD NuD NuD NuD

1 0.001 15.08 22.76 18.92 28.88 24.43 36.74 26.37 7451
0.01 6.730 10.28 8.606 13.09 11.34 17.05 12.76 763.9
0.1 3.418 4.833 4.309 6.153 5.952 8.254 6.874 84.27
1.0 2.978 3.193 3.405 3.806 4.973 5.448 6.040 14.01

10 2.978 2.999 3.392 3.434 4.829 4.909 5.921 6.758
1 2.978 2.978 3.392 3.392 4.828 4.828 5.908 5.908

10 0.001 15.26 23.01 19.17 29.23 24.72 37.02 26.94 41.23
0.01 6.790 10.37 8.691 13.22 11.82 17.73 12.90 19.14
0.1 3.435 4.863 4.335 6.198 5.966 8.272 6.916 9.431
1.0 2.982 3.200 3.414 3.820 4.986 5.461 6.053 6.494

10 2.982 3.004 3.401 3.443 4.843 4.923 5.933 6.014
1 2.982 2.982 3.401 3.401 4.843 4.843 5.920 5.920

1 0.001 15.49 23.36 19.40 1262 25.25 37.83 27.40 42.11
0.01 6.884 10.53 8.875 134.0 11.61 17.42 13.12 19.49
0.1 3.477 4.927 4.418 18.64 6.065 8.423 7.006 9.574
1.0 3.019 3.240 3.489 5.132 5.089 5.565 6.141 6.585

10 3.019 3.041 3.476 3.642 4.953 5.032 6.028 6.107
1 3.019 3.019 3.476 3.642 4.953 4.953 6.016 6.016

10�1 0.001 17.03 25.99 22.10 34.10 28.41 42.82 30.41 47.82
0.01 7.568 11.62 9.990 15.30 12.91 19.59 14.50 21.71
0.1 3.791 5.399 4.921 7.088 6.629 9.314 7.555 10.47
1.0 3.303 3.544 3.930 4.376 5.591 6.103 6.610 7.098

10 3.303 3.327 3.917 3.963 5.467 5.547 6.507 6.588
1 3.303 3.303 3.917 3.917 5.467 5.467 6.495 6.495

10�2 0.001 21.94 33.77 28.97 45.06 36.46 56.19 38.92 63.18
0.01 9.539 14.86 12.67 19.78 16.14 25.11 17.89 27.46
0.1 4.653 6.731 5.963 8.827 7.790 11.36 8.754 12.61
1.0 4.082 4.380 4.754 5.309 6.477 7.131 7.529 8.163

10 4.082 4.112 4.743 4.800 6.348 6.442 7.418 7.515
1 4.082 4.082 4.743 4.743 6.348 6.348 7.406 7.406

10�3 0.001 28.81 45.48 38.59 60.63 47.31 78.82 50.09 83.36
0.01 11.59 18.97 15.28 25.17 19.25 31.55 21.03 34.10
0.1 5.258 7.955 6.592 10.30 8.480 13.07 9.467 14.38
1.0 4.632 4.997 5.236 5.898 6.989 7.779 8.065 8.834

10 4.632 4.668 5.228 5.295 6.858 6.965 7.949 8.061
1 4.632 4.632 5.227 5.227 6.858 6.858 7.938 7.938

10�4 0.001 34.53 57.74 45.71 75.42 55.26 92.09 59.57 102.7
0.01 12.47 21.90 16.35 28.82 20.48 35.69 22.40 38.83
0.1 5.458 8.522 6.778 10.96 8.677 13.81 9.680 15.20
1.0 4.835 5.236 5.403 6.114 7.157 8.006 8.251 9.084

10 4.835 4.875 5.396 5.468 7.026 7.139 8.133 8.251
1 4.835 4.835 5.396 5.396 6.996 6.996 8.122 8.122
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the distinction between the two alternatives is a fine one.
The two alternatives are treated by Nield et al. [19]. Some
general aspects of viscous dissipation in the context of
forced convection in a porous medium are discussed by
Nield [20].

Neglecting the contribution of viscous dissipation, the
quantity ð�bþ 1Þ=�b remains as the only contribution to
S(y 0,z 0,n) in the Green’s function solution for Uð�y;�z; x̂Þ
when using Eqs. (15a) and (15b). As in the previous case,
the velocity distribution is computed using the Galerkin
method and a Fourier series solution for the purpose of
verification of accuracies, especially, when b/a is large. As
to the temperature solution, the following set of basis func-
tions satisfy the homogeneous boundary condition of the
second kind along the walls,

fj ¼ ½1þ ðmj � 1Þð1� �y2Þ�
� ½1þ ðnj � 1Þð1� �z2=�b2Þ��y2ðmj�1Þ�z2ðnj�1Þ ð26Þ

for all combinations of mj = 1,2, . . . and nj = 1,2, . . . This
function is to be placed for fj and then for fi in Eqs. (18a)
and (18b), after replacing j with i, to get the new members
of the matrices A and B. As before, Eq. (14a) provides the
eigenvalues and eigenvectors for the determination of dm
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vectors located in the rows of the D matrix. Next, the rela-
tion P=[(D Æ B)T]�1 produces the members of matrix P for
inclusion in the Green’s function solution,

hð�y;�z; x̂Þ ¼ �y2

2
þ �z2

2�b

� �
þ
Z x̂

n¼0

dn
Z �b

�z¼0

Z 1

�y¼0

Gð�y;�z; x̂j�y0;�z0; nÞ

� 1þ �b
�b

� �
d�y 0 d�z0 �

Z �b

�z¼0

Z 1

�y¼0

uð�y0;�z0ÞGð�y;�z; x̂j�y 0;�z0; 0Þ

� �y2

2
þ �z2

2�b

� �
d�y0 d�z0 ð27aÞ

where the Green’s function

Gð�y;�z; x̂j�y0;�z0; nÞ ¼
XN

m¼1

XN

i¼1

pmifið�y0;�z0Þ
" #

Wmð�y;�zÞe�k2
mðx̂�nÞ

ð27bÞ
contains new sets of basis functions fið�y0;�z0Þ, eigenfunctions
Wmð�y;�zÞ, parameters pmi, and eigenvalues k2

m.
Once the temperature solution hð�y;�z; x̂Þ is available, the

following equation provides the mean wall temperature,

hwðx̂Þ ¼
1

1þ �b

"Z 1

�y¼0

hð�y; �b; x̂Þd�y þ
Z �b

�z¼0

hð1;�z; x̂Þd�z

#
ð28Þ
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Fig. 4. Circumferentially average Nusselt number for rectangular passages
Under the constant wall heat flux condition, the energy bal-
ance leads to a relation for the bulk temperature,

T b � T i

qwa=ke

¼ 1þ �b
�b

x̂ ð29Þ

It is also computed analytically from Eq. (20a), with
hð�y;�z; x̂Þ from Eq. (24), for the verification of the mathe-
matical relations for the temperature solution. If one desig-
nates hw = (Tw � Ti)/(qwa/ke) and hb = (Tb � Ti)/(qwa/ke),
the Nusselt number is obtainable from the relation
Nu = ha/ke = 1/(hw � hb) and then using the hydraulic
diameter Dh = 4ab/(a + b) in the definition, the Nusselt
number becomes

NuD ¼
Dh

a
Nu ¼ 4�b

1þ �b
1

hw � hb

� �
ð30Þ

Fig. 4(a)–(d) show the Nusselt numbers computed for b/a =
1, 2, 5, and 10 and plotted versus (x/Dh)/(ReDPr) where
ReDPr = DhqcpU/ke and Dh = 4ab/(a + b). To illustrate
the variations of the wall temperature, hw and hb are plot-
ted in Fig. 5(a)–(d) for the same aspect ratios. A sample of
numerical data appearing in these figures is also tabulated
in Table 2. The data have similar convergence characteris-
tics as discussed for those appearing in Table 1. However,
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with prescribed wall heat flux when b/a = 1 (a), 2 (b), 5 (c), and 10 (d).
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for this case, the thermally fully developed solution can be
compared with the exact series solution [9].

3. Results and discussion

An examination of NuD data in Fig. 2(a)–(d) indicates
that a thermally fully developed condition is attainable
when ðx=aÞ=ðReDPrÞ%0:5. Only small changes are detect-
able by examining individual figures in Fig. 2(a)–(d). The
data in Table 1 clearly show this trend. The data show that
1% departure from the fully developed NuD value occurs at
(x/a)/(ReDPr) � 0.15 when b/a = 1 for all MDa values.
However, there is a small deviation when b/a = 2 as this
1% deviation occurs at (x/a)/(ReDPr) � 0.21 for slug flow
when MDa = 0 and at (x/a)/(ReDPr) � 0.27 for open
channel flow when M Da =1. This trend continues for
other aspect ratios as this 1% departure from the fully
developed condition is within (x/a)/(ReDPr) � 0.49–0.71
when b/a = 5 and it slightly changes from (x/a)/(ReDPr) �
0.52–0.8 when b/a = 10, for a range of MDa between 0 and
1.

However, the situation changes significantly when the
wall heat flux is prescribed. Fig. 4(a) shows that a thermally
fully developed condition is also attainable when (x/a)/
(ReDPr) � 0.5 while this limit increases as b/a increases
and it exceeds 10 in Fig. 4(d). Moreover, this situation
remains the same for all MDa values in Fig. 4(a)–(d). This
unique and interesting feature, for the case of prescribed
wall heat flux, deserves a more detailed study for a better
understanding of this phenomenon. A sample of data for
different b/a and MDa values, appearing in Table 2, indi-
cate this trend.

It is appropriate to study the limiting condition when
MDa! 0 as this can provide useful information for all
MDa values. In the absence of frictional heating, the exact
solution of Eq. (25) with prescribed wall heat flux qw is

T � T i

qwa=k
¼ hð�y;�z; x̂Þ

¼ 1

2
�yð Þ2 þ �z=�b

� 	2
h i

þ x̂½1þ ð1=�bÞ2� � 1þ �b
6

� 2
X1
n¼0

ð�1Þn

n2p2
cosðnp�yÞ exp½�n2p2x̂�

� 2�b
X1
n¼0

ð�1Þn

n2p2
cosðnp�z=�bÞ exp½�n2p2x̂=�b2� ð31Þ

where, as before, �b ¼ b=a and x̂ ¼ ðx=aÞ=Pe when Pe =
aqcpU/ke. This equation can provide the temperature with-
in the thermal entrance region with a high degree of accu-
racy when �b is very large. The terms in these series
exponentially reduce as n becomes large and this solution



Table 2
A numerical sample of data appearing in Figs. 4(a)–(d) and 5(a)–(d)

MDa x̂ b/a = 1 b/a = 2 b/a = 5 b/a = 10

NuD hw NuD hw NuD hw NuD hw

1 0.001 16.51 0.1231 20.99 0.1285 28.65 0.1175 32.08 0.1145
0.01 7.399 0.2903 9.458 0.2969 12.66 0.2753 14.93 0.2546
0.1 3.725 0.7369 4.562 0.7345 6.243 0.6539 7.447 0.5983
1.0 3.087 2.648 3.081 2.366 3.915 2.051 5.059 1.819

10 3.087 20.65 3.019 15.88 2.933 13.14 3.352 12.08
1 3.087 1 3.019 1 2.919 1 2.9060 1

10 0.001 16.55 0.1229 21.07 0.1280 28.77 0.1171 31.66 0.1160
0.01 7.415 0.2897 9.492 0.2959 12.71 0.2743 15.06 0.2524
0.1 3.732 0.7359 4.577 0.7326 6.267 0.6519 7.463 0.5973
1.0 3.092 2.647 3.092 2.362 3.939 2.046 5.085 1.815

10 3.092 20.65 3.030 15.88 2.955 13.13 3.380 12.08
1 3.092 1 3.030 1 2.941 1 2.933 1

1 0.001 16.88 0.1205 21.74 0.1242 29.65 0.1136 32.31 0.1136
0.01 7.549 0.2849 9.770 0.2879 13.09 0.2668 15.43 0.2467
0.1 3.788 0.7280 4.702 0.7171 6.451 0.6367 7.643 0.5858
1.0 3.136 2.638 3.186 2.337 4.119 2.009 5.283 1.788

10 3.136 20.64 3.123 15.85 3.127 13.07 3.592 12.01
1 3.136 1 3.123 1 3.112 1 3.132 1

10�1 0.001 19.11 0.1067 25.71 0.1052 34.30 0.0984 37.04 0.0993
0.01 8.518 0.2548 11.42 0.2486 15.11 0.2326 17.43 0.2196
0.1 4.208 0.6753 5.444 0.6398 7.403 0.5703 8.592 0.5332
1.0 3.472 2.576 3.737 2.214 4.933 1.876 6.152 1.691

10 3.472 20.58 3.663 15.73 3.868 12.86 4.447 11.82
1 3.472 1 3.663 1 3.849 1 3.929 1

10�2 0.001 25.74 0.0797 35.13 0.0774 45.79 0.0740 48.42 0.0762
0.01 11.36 0.1961 15.33 0.1890 19.85 0.1799 22.32 0.1739
0.1 5.467 0.5658 7.109 0.5251 9.374 0.4756 10.62 0.4524
1.0 4.461 2.448 4.829 2.052 6.246 1.734 7.564 1.581

10 4.461 20.45 4.726 15.56 4.941 12.67 5.602 11.65
1 4.461 1 4.726 1 4.915 1 4.983 1

10�3 0.001 35.46 0.0584 48.10 0.0569 60.95 0.0559 64.18 0.0579
0.01 14.96 0.1537 19.91 0.1489 25.17 0.1444 27.82 0.1419
0.1 6.742 0.4966 8.593 0.4603 11.03 0.4221 12.28 0.4062
1.0 5.351 2.374 5.628 1.974 7.118 1.669 8.463 1.530

10 5.351 20.37 5.494 15.49 5.601 12.60 6.244 11.58
1 5.351 1 5.494 1 5.569 1 5.608 1

10�4 0.001 44.73 0.0467 59.77 0.0461 73.95 0.0463 77.56 0.0480
0.01 17.47 0.1345 22.97 0.1311 28.40 0.1294 31.29 0.1272
0.1 7.389 0.4707 9.294 0.4369 11.73 0.4042 12.98 0.3901
1.0 5.762 2.347 5.957 1.948 7.419 1.649 8.769 1.515

10 5.762 20.35 5.808 15.46 5.813 12.57 6.429 11.57
1 5.762 1 7.543 1 5.779 1 5.839 1
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can produce accurate data at small values of x̂ by predeter-
mining the number of needed term in this series. Next,
using Eq. (31) for hð�y;�z; x̂Þ, as before, Eqs. (28) and (29)
will determine the mean wall temperature hw = (Tw � Ti)/
(qwa/ke) and the bulk temperature hb = (Tb � Ti)/(qwa/
ke). Then, the Nusselt number is obtainable from the rela-
tion Nu = ha/ke = 1/(hw � hb) and, when using the hydrau-
lic diameter in the definition, Eq. (30) yields the Nusselt
number NuD.

For slug flow, M Da = 0, though rectangular ducts,
Fig. 6 shows the unique behavior of this limiting Nusselt
number for different values of �b ¼ b=a ratios. An inflection
point, detectable in Fig. 4(c) and (d), is also detectable in
Fig. 6. It shows that there is a change in the shape of these
curves as b/a increases. This change is clearly visible for
b/a P 5. As an example, when b/a P 50, the thermally
fully developed condition exists when (x/a)/ReDPr � 1000.
Also, this Fig. 6 shows that a thermally fully developed
condition may not be attainable in practical applications
and the parallel plate solution is a viable choice for very
narrow channels.

The temperature variation at the wall, when b/a is large,
also can assist in the understanding of this Nusselt number
behavior. The data in these figures are indicative of a
unique behavior in the entrance region of rectangular pas-
sages. It was noted that there is a significant change in the
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wall temperature of the rectangular passage as x̂ ¼ ðx=aÞ=
Pe increases beyond 10�2; earlier, the temperature profile
is nearly flat. Fig. 7(a) and (b) are prepared to illustrate
the variation of (h � hb) as x̂ increases. Fig. 7(a) is plotted
when y = a and the temperature (h � hb) changes as z/a
changes along the wall. Similarly, Fig. 7(b) is plotted when
z = b and the temperature (h � hb) changes as y/a changes
along the wall. It is a representative of the temperature
behavior when MDa is very small. The solid lines are for
MDa = 0 using exact analysis while the dot-dash lines
are for M Da = 10-4 using this extended weighted residual
method.

We hypothesize that the axial locations of the inflexion
points correspond to the coalescence of the thermal bound-
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Fig. 7. Typical wall temperature variations of a rectangular passage under
thermally fully developed condition and prescribed wall heat flux.
ary layers, arising on opposite walls of the enclosure, that
thicken as the fluid travels downstream. If the position of
the first coalescence (involving the shorter dimension of
the cross-section of the channel) and that of the second
coalescence are x1 and x2, respectively, then scale analysis
leads to the expectation that x1 = ea2qcpU/ke and x2 =
eb2qcpU/ke, where e is a constant of order unity. According
to the data in Fig. 4(a), e � 1/2. This implies that
x2/x1 = (b/a)2 as the data in Fig. 6 would indicate. As an
example, the thermally fully developed entrance condition
for b/a = 10 extends to about 100 times larger than that
for b/a = 1. As an illustration, assuming a = 1 cm when
b/a = 10, the thermal entrance length is x/a = 50 · Pe

and, when Pe = 20, it becomes x = 1000 · a or 10 m.

4. Conclusion

A Green’s function solution based on the variational
calculus is a viable method to study heat transfer in fluid
flow passages. The rectangular duct serves as a mean of
demonstrating the viability of this method for application
to flow in porous passages. Also, the methodology
presented in this paper equally applies when the velocity
profile has other forms [22,23]. However, the inclusion of
the contribution of axial conduction and/or local thermal
non-equilibrium requires a significant undertaking. A
change of basis function permits its extension to other
geometries. Using symbolic algebra on modern software
can produce results with high degree accuracy away from
entrance location. At small values of axial coordinate, a
larger number of basis functions are needed and an accu-
rate solution can become demanding. However, this prob-
lem exists for other types of series solutions including the
exact one.
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The results indicate a unique and interesting behavior
when a rectangular channel is heated uniformly at a con-
stant rate from all sides. For these channels with large
b/a, the thermal entrance length can increase by a factor
of �(b/a)2. This would indicate that a thermally fully devel-
oped condition may not be attainable in practical applica-
tions when aspect ratio is large.
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